NÚMEROS REALES







RETO MATEMÁTICO

Completar con los números del 1 al 9 que hagan verdadero el resultado
Nuevo reto matemático | El Club del Ingenio - Juegos para entrenar ...






                                                                  NÚMEROS REALES

Los números reales son el conjunto que incluye los números naturales, enteros, racionales e irracionales. Se representa con la letra .
Números naturales
De la necesidad de contar objetos surgieron los números naturales. Estos son los números con los que estamos más cómodos: 1, 2, 3, 4, 5, 6, ...hasta el infinito. El conjunto de los números naturales se designa con la letra mayúscula N.
Todos los números están representados por los diez símbolos : 0, 1, 2, 3, 4, 5, 6. 7, 8, y 9, que reciben el nombre de dígitos.

Ejemplo

Los números naturales nos sirven para decir cuántos compañeros tenemos en clases, la cantidad de flores que hay en un ramo y el número de libros que hay en una biblioteca.

Números enteros

El conjunto de los números enteros comprende los números naturales y sus números simétricos. Esto incluye los enteros positivos, el cero y los enteros negativos. Los números negativos se denotan con un signo "menos" (-). Se designa por la letra mayúscula Z y se representa como:

Un número simétrico es aquel que sumado con su correspondiente número natural da cero. Es decir, el simétrico de n es -n, ya que:


Los enteros positivos son números mayores que cero, mientras que los números menores que cero son los enteros negativos.
Los números enteros nos sirven para:
·         representar números positivos: ganancias, grados sobre cero, distancias a la derecha;
·         representar números negativos: deudas, pérdidas, grados bajo cero y distancias a la izquierda.

Ejemplos

En el polo Norte la temperatura está por debajo de 0ºC durante casi todo el año, entre -43 ºC y -15ºC en invierno. Una persona compra un vehículo por 10.000 pesos pero solo tiene 3.000 pesos.

Esto significa que queda debiendo 7.000 pesos.

Números racionales

Los números fraccionarios surgen por la necesidad de medir cantidades continuas y las divisiones inexactas. Medir magnitudes continuas tales como la longitud, el volumen y el peso, llevó al hombre a introducir las fracciones. El conjunto de números racionales se designa con la letra Q:

Ejemplos

Un pastel dividido entre tres personas se representa como 1/3 un tercio para cada persona; una décima parte de un metro es 1/10 m= 0,1m.

Números irracionales

Los números irracionales comprenden los números que no pueden expresarse como la división de enteros en el que el denominador es distinto de cero. Se representa por la letra mayúscula I.
Aquellas magnitudes que no pueden expresarse en forma entera o como fracción que son inconmensurables son también irracionales. Por ejemplo, la relación de la circunferencia al diámetro el número π=3,141592…
Las raíces que no pueden expresarse exactamente por ningún número entero ni fraccionario, son números irracionales:

Propiedades de los números reales

1.      La suma de dos números reales es cerrada, es decir, si a y b  , entonces a+b .
2.       La suma de dos números reales es conmutativa, entonces a+b=b+a.
3.       La suma de números es asociativa, es decir, (a+b)+c= a+(b+c).
4.       La suma de un número real y cero es el mismo número; a+0=a.
5.       Para cada número real existe otro número real simétrico, tal que su suma es igual a 0: a+(-a)=0
6.       La multiplicación de dos números reales es cerrado: si a y b  , entonces a . b .
7.       La multiplicación de dos números es conmutativa, entonces a . b= b. a.
8.       El producto de números reales es asociativo: (a.b).c= a.(b .c)
9.       En la multiplicación, el elemento neutro es el 1: entonces, a . 1= a.
10.   Para cada número real a diferente de cero, existe otro número real llamado el inverso multiplicativo, tal que: a . a-1 = 1.
11.   Si a, b y c  , entonces a(b+c)= (a . b) + (a . c)

 Resultado de imagen para NUMEROS REALES


ACTIVIDAD

1.Completar la siguiente tabla con los símbolos e o e/
Numero
N
Z
Q
I
R
5





TI





-8





4





453





-1





3.5





2.23232323…





7,6





23





1






2. Inventar una tabla similar a la anterior con 10 números diferentes

3. En el siguiente diagrama ubicar 2 ejemplos de cada conjunto numérico
Números reales - Qué es, definición y concepto | Economipedia

Comentarios

Entradas más populares de este blog

TÉRMINOS HOMOGÉNEOS Y HETEROGÉNEOS

PLANO CARTESIANO

OPERACIONES CON MONOMIOS